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2 SAMMY 

Talk outline 

•  Overview of SAMMY 8.1 
•  High-level API Design Overview for SAMMY Modernization 

•  Recent developments 
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New features in SAMMY 8.1 

•  SAMINT: integral benchmark exp.’s inform res. param. eval’s. 
–  Implemented  by Vlad Sobes 

•  SAMMY integrated into SCALE SQA in AMPX footsteps 
–  Automated cmake/ctest suite, revision control repository, FogBugz 
–  Platforms supported Linux/gfortran, Mac/gfortran, Windows/ifort 

•  New detector resolution functions in collaboration with RPI 

•  Updated physical constants 
–  SAMMY and SAMRML compute consistently now 

•  Corrected a misplaced index causing incorrect matrix 
multiplication for non-diagonal data covariance matrix 
–  (uncovered and corrected by Vlad Sobes) 

•  Several other bug fixes 
–  Revealed by compiler or platform idiosyncrasies   
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SAMSON high-level API diagram 

•  Define API’s before implementation 
–  Enables variety of methods for each API 
–  Leverage I/O and Resonance API from C++ SAMRML 

•  Delineate I/O formats from program logic (e.g. SCALE data resource) 

Resonance 
API 

Fit API 

I/O API 
Experimental 

effects  
API 

SAMSON 
driver 
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Experimental Effects (EE) API 
•  Convolution of: Doppler broad., Target, and Detector effects… 

–  Each one implenting the EE API 

Doppler broadening 
(FGM, DDXS, S(a,b)) 

Neutron transport:   
SHIFT API 

(DBRC, LH, 
multiple scatter.) 

Resolution 
Function 

(via e.g. MCNP) 

•  SHIFT API for on-the fly neutron transport aspects 
–  Would enable fitting integral benchmark experiments (IBE) 
–  In SCALE development (in 3-6 months) 
–  MPI enabled 
–  It could use MCNP input  

•  In principle the entire experimental setup could be simulated 
–  Fitting to raw data may be possible; varying opinions 
–  Raw data may become publicly available 
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Fit API: GLS, Monte Carlo, MinMax, ... 

•  Generalized Least Squares (GLS) 
–  Compact expressions by Froehner (Sect. 2.2 of JEFF Report 18, 2000) 

•  Incorporates covariance between various data sets 

•  (Total) Monte-Carlo, MinMax 
–  May yield more realistic uncertainties than GLS. 

•  Fit differential, integral benchmark experiment data 
–  Separately or together (cf. SAMINT) 

GLS Monte Carlo 
(UMC, “Sampler”) 

MinMax 
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Interface 
Data 

getNumberParams 
Get the number of parameters 

 getNumData 
Get the number of 
experimental 

getData  
Get the list of experimental 
data (1-dim Array) 

getParam 
Get the list of initial params 
(1-dim Array) 

getCovMatrix 
Get the full covariance matrix 
(2-dim Array) 

getTheory 
Get theoretical values based 
on current parameters  
(1-dim Array) 

setParam 
Set the current parameters  
(1-dim Array) 

setCovMatrix 
Set the full covariance matrix 
(2-dim Array) 
 

 
  

Interface 
Fit 

setData 
Sets an instance of Data 
interface 

initialize 
After setting Data object 
initialize internal data 
structures 

execute  
Do the actual fitting  

finalize 
Clean up any internal 
resources 

 
  

Interface 
Array 

getNumDim 
Get the number of dimensions 

 getSize(int dim) 
Get the array size for 
dimension m 

getValue(int i1, int i2, …) 
Get the value for the indicated 
indices. In C++ we would pass 
in a vector of length 
getNumDim 

setValue(int i1,int i2, …_ 
set value 
  

•  Actual instances are instantiated by a factory class. 
 
•  Data will have method to get the derivatives (2-dim Array: 

getNumberParams x getNumData).  There will be a function 
that computes derivatives numerically. 

 
•  Fit calls setParams, getTheory, setCovMatrix repeatedly in the 

course of fitting the data 
 

Fit API: Preliminary interface 
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V11 
Covariance for 

Exp.1 

V12 
Cross-

Covariance 
between  

Exp.1 and 2 
(optional) 

V22 
Covariance for 

Exp.2 
V21=V12 

M 

Params Concatenated 1D array of exp. data 

•  Parameters and exp. data cast into 1D array by an implementation of Data  
•  for generic use inside SCALE framework 
•  Froehner’s formulation and notation: 

Fit API: GLS implementation 

“C”= 

“z” = 

(optional cross covariance) 
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Fit API: GLS implementation 

•  Generalized Least Squares (GLS) 
–  Compact expressions by Froehner (Sect. 2.2 of JEFF Report 18, 2000) 

•  Incorporates covariance between various data sets 

•  Consider cpp-array library (CPC 185,1681, 2014)  

–  Parallelized via underlying BLAS library (Intel MKL, cuBLAS, MAGMA, …) 
–  Compact notation for matrix operations, e.g. parameter set update 
–  P =  P + inv( transpose(S) * inv(C) * S) * transpose(S) * inv(C) * ( Π – Τ ) 

•  BLAS advantages 
–  drastically speeds up large matrix operations in SAMMY & shortens code  

•  (Arbanas, Dunn, Wiarda, M&C2011) 

GLS 
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Leverage AMPX Resonance API 

ENDF 
Resonance 
parameters 

and 
Covariance 

matrix 

MLBW 

Reich-Moore 
LRF=3 

Adler-Adler 

Reich-Moore 
LRF=7 

URR –  
SLBW only 

•  SLBW and MLBW parameter 
are stored in the same class 
with a flag indicating which 
formalism  to use 

•  Resonance parameters for 
Reich-Moore for LRF=3 are 
initially stored in a different 
class, but are  converted to  a 
LRF=7 class before calculation 

•  If derivatives are desired, all 
formalisms (except URR) are 
converted to LRF=7 so 
SAMRML can be used under 
the hood 

•  All resonance parameter 
classes can contain a 
covariance matrix. If 
converting to a different 
formalism, the covariance 
matrix is re-organized 
accordingly 

A GND reader will be added to read the resonance parameters into memory 
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Class describing 
incident particle and 

target 

API to calculated 
cross section and 
derivatives at a 
given energy 

+ 
some method to 
determine grid 

structure 

Implementation for 
MLBW 

Implementation  
for Reich-Moore 

Implementation for  
Adler-Adler 

New C++ implementation 
for cross-section and 

double differential 

SAMRML for derivatives 

Leverage AMPX Resonance API classes 

An API also exists for the URR.  
Currently only implementation is SLBW, 
which includes derivatives at 0 K. 
Probability tables are not yet supported. 



12 SAMMY 

Iterator	
Remove	
Insert		

Interpolate	
can	interpolate	?	 Mesh	Genera5on	 Adding/Mul5plying	

Thinning	

  Leverage AMPX mesh generation API: 
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Recent Developments: 
•  Generalized Reich-Moore Approximation (ND2016) 

–  Total capture equivalent to full R-matrix, unitarity, Brune transform O.K. 

•  Convert SAMMY resonance parameters to formal R-matrix 
–  SAMMY evaluations set Sc(E)-Bc=0 boundary condition (b.c.) 

•  Advantage: R-matrix resonance energies near resonance peaks 
–  Andrew Holcomb programmed conversion to/from formal R-matrix 

•  Implement full alternative R-matrix (in progress by A. Holcomb) 

•  S-matrix pole representation of R-matrix (Hwang, Froehner) 
–  via Brune transform of R-matrix param.’s for Lc(E)-Bc=0 b.c. 
–  Useful for on-the-fly Doppler broadening in neutron transport app.’s 
–  Nicolas Michel’s complex Coulomb w.f. library (CPC, 176 (2007) 232) 

•  Effects of closed channels below and at thresholds (cusp, …) 

•  Can R-matrix formalism support a normalization uncertainty? 
–  Model uncertainties often much smaller than data normalization unc.’s 
–  How large are effects of unaccounted channels 
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Conclusions and outlook 

•  SAMMY 8.1 Beta released rsicc.ornl.gov 
–  8.1 final release will include some recently suggested modifications 

•  SAMMY modernization continuing in a SCALE SQA framework 

•  API top-to-bottom design 
–  code sharing with AMPX modules 

•  e.g. I/O, SAMRML modernized into C++ by Doro Wiarda and Andrew Holcomb 

•  Collecting SAMMY feature requests from users 
–  Collaboration with RPI and others has lead to SAMMY improvements 
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Backup slides 



16 SAMMY 

RM History and use 
•  Reich-Moore divides full R-matrix into particle and γ-ray blocks 

–  Formal expressions derived for reduced R-matrix of particle channels 
–  The effect of γ-ray channels on particle-channels approx. by a diagonal 

•  Level-level interference among γ-ray channels neglected  
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Reich and Moore, Phys. Rev. 111, 929 (1958)  
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Motivation for generalized Reich-Moore   
•  Conversion of RM R-matrix parameters 

–  Between formal and alternative (a.k.a. physical) ones (C. Brune, 2002) 

•  Investigate whether Reich-Moore (RM) approx. is unitary 
–  It may appear not to be as particle-channel R-matrix is complex (not real)  
–  RM derivation was revisited to investigate unitarity 
–  In this process a generalization of RM was found 

•  This generalization is manifestly unitary 
•  Corollary: Conventional RM is also unitary 
•  It provides basis for Fritz Froehner’s prescription used by SAMMY 

•  Other potential benefits Generalized RMA (gRMA) 
–  May provide better fits to total capture (and other cross sections) 

•  Because gRMA reproduces total cross section formally 
–  May shed light on resonant-interference effects neglected by conv. RM 

•  Including statistical properties of capture widths 
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Derivation uses full R-matrix via level-matrix A 

•  Separate channel space into particle and γ-ray channels: 

Generalized Reich-Moore R-matrix Approximation

Goran Arbanas1,?, Vladimir Sobes1, Andrew Holcomb1, Pablo Ducru2, Marco Pigni1, and Dorothea Wiarda1

1Nuclear Data and Criticality Safety Group, Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge,
TN 37831-6171
2Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract. A conventional Reich-Moore approximation (RMA) of R-matrix is generalized into a manifestly
unitary form by introducing a set of resonant capture channels that are treated explicitly in a generalized reduced
R-matrix. A dramatic reduction of channel space witnessed in conventional RMA, from N
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from N
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0 , where N
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+ N� and N� is the number of R-matrix levels. This
reduction, although not as dramatic as in the conventional RMA, could nonetheless be significant for medium
and heavy nuclides where N� ⌧ N�. The resonant capture channels introduced by generalized RMA are a
consequence of retaining level-level interference via capture channels neglected in conventional RMA. It is
shown that the expression for total capture cross section in generalized RMA is formally equal to that of the
full N
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c

R-matrix. This suggests that generalized RMA could yield improved nuclear data evaluations in
the resolved resonance range. However, this would come at a cost of introducing N�(N� �1)/2 resonant capture
width parameters.
It is shown that manifest unitarity of generalized RMA may provide a formal basis for a method advocated
by Froehner and implemented in a nuclear data evaluation code SAMMY for restoring unitarity of conven-
tional RMA. A welcome byproduct of generalized RMA is that its capture widths are exactly convertible into
alternative R-matrix parameters via Brune tranform. Application of idealized statistical methods to generalized
RMA shows that variance among RMA capture widths could be used to estimate variance among o↵-diagonal
elements neglected in conventional RMA. Finally, it is shown that significant departure of capture widths dis-
tribution from an idealized one may indicate presence of underlying doorway states.
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so that a level matrix A could be expressed as
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where L� is a logarithmic derivative of �-ray outgoing
wave function conventionally separated into shift function
S� ⌘ <(L�) and pentrability P� ⌘ =(L�). The shift factor
of �-ray channels is approximated by 0 and their boundary
conditions are set to 0, namely,

L� � B� ⌘ S� + iP� � B� ⇡ iP� (7)
1Note: the word projected is intentionally alluding to Feshbach’s pro-

jection operator formalism (P+Q=1) of which Reich-Moore eliminated
channels could be viewed as a special case of projected out channels, i.e.
Q = �.
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� ⌘ (�c,��) (4)

and analogously for L � B

L � B ⌘
 

Lc � Bc 0

0 L� � B�

!
(5)

so that a level matrix A could be expressed as

A�1 = e � E1 + ��(L� � B�)�T

� + �c(Lc � Bc)�T

c . (6)

where L� is a logarithmic derivative of �-ray outgoing
wave function conventionally separated into shift function
S� ⌘ <(L�) and pentrability P� ⌘ =(L�). The shift factor
of �-ray channels is approximated by 0 and their boundary
conditions are set to 0, namely,

L� � B� ⌘ S� + iP� � B� ⇡ iP� (7)
1Note: the word projected is intentionally alluding to Feshbach’s pro-

jection operator formalism (P+Q=1) of which Reich-Moore eliminated
channels could be viewed as a special case of projected out channels, i.e.
Q = �.
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Full R-matrix g-ray channels 
•  γ-ray channels  

–  defined by EM multipolarity, helicity, and final state quantum numbers 
–  Selection rules based on f.s. quantum numbers, γ-ray multipolarity 
–  Electric: E1, E2, E3, … 
–  Magnetic: M1, M2, M3, … 

•  Level-level interference takes place via identical γ-ray channels 
–  Use conventional approximation S-B=0  

•  Or use Brune alternative R-matrix parameters for which S-B=0 always  

Consequently the level matrix A could be written as

A�1 ⇡ e � E1 + i��P1/2
� P1/2

� �
T

� + �c(Lc � Bc)�T

c (8)

where �-ray penetrability P� has been written as a prod-
uct of penetrability amplitudes P1/2

� = k

L+1/2
� where L

is �-ray multipolarity and k is its momentum wavenum-
ber so that E = ~k�c is its energy. (This form of �-ray
penetrabilities comes from expression for capture width
matrix elements in e.g. Section 3C-2 of Bohr and Mot-
tleson, Nuclear Structure, Vol. 1, rather than from the
logarithmic derivative of the outgoing wave function in
case of particle channels.) A �-ray channel is specified
by the energy and quantum numbers of the final reso-
nant state, E

f

, J
⇡

f

f

, and angular momentum quantum num-
bers L�ML� , and parity (or helicity) of the primary emit-
ted �-ray. Interferences between �-rays between di↵erent
capturing levels (e.g. µ and ⌫) that lead to o↵-diagonal
elements of �(�)

µ⌫ takes place among �-rays of the same
L�ML�⇡� into the same final level. For convenience one
could define generalized Reich-Moore capture width ma-
trix �(�)/2 ⌘ ��P1/2

� P1/2
� �

T

� so that

A�1 = e � E1 + i�(�)/2 + �c(Lc � Bc)�T

c . (9)

When �(�) is positive semidefinite, one could compute its
principal square root matrix of capture width amplitudes

�0�0 ⌘ [�(�)/2]1/2, (10)

that is to be used for fitting partial width amplitudes when
using R-matrix formalism. The partial width amplitude
matrix in gRMA would be a concatenation of particle and
capture width matrices, namely,

�0 = (�c,�
0
�0 ), (11)

in terms of which the gRMA reduced R-matrix is

R = �0T (e � E1)�1�0 (12)

where e is a diagonal matrix of R-matrix level energies,
eµ⌫ = Eµ�µ⌫.

(For level-matrix A formalism one could fit partial
capture widths in �(�) directly.) Matrix �(�) is positive
semidefinite because it is of the form M

T

M that implies
positive definiteness. Matrix �0�0 is a (N� ⇥ N�) matrix
while �� matrix is (N� ⇥ N�) . For the shift function ap-
proximation and boundary conditions mentioned above it
will be shown below that the total capture cross section
could be expressed via (N� ⇥ N�) �0�0 matrix in a way that
is equal to total capture computed via the original (N�⇥N�)
�� matrix. Since N� � N� for heavy nuclides this yields
a significantly smaller number of parameters needed to fit
total capture. However, this gain comes at a loss of infor-
mation needed to compute partial capture cross sections
contained in the original �� matrix. The unitarity of the
U-matrix is preserved when re-defining �-ray channels via
�0�0 , and in harmony with the conventional RMA penetra-
bility associated with these capture channels is 1 according
to definition in Eq. (10). Since the number of channels in

gRMA is N

c

0 = N

c

+ N�, there is slight advantage to us-
ing level-matrix A because it is slightly smaller than the
R-matrix in gRMA, although this advantage may not be
significant for N

c

⌧ N�. In contrast to gRMA, R-matrix
expressions are vastly advantageous in conventional RMA
because its reduced R-matrix is (N

c

⇥N

c

) where N

c

⌧ N�.
O↵-diagonal elements of �(�) matrix are set to zero in

conventional Reich-Moore approximation. The retained
diagonal elements are the capture width parameters of con-
ventional Reich-Moore approximation. The e↵ect of set-
ting o↵-diagonal elements to 0 in conventional RMA will
lead to a slight deviation between its fitted widths (mainly
the capture widths but other widths too to a smaller degree)
and those fitted using gRMA.

Note that a unitary matrix U could be divided into
blocks introduced above as

U ⌘
 

Ucc Uc�
U�c U��

!
(13)

so that a total capture cross section is proportional to (Note
that 1c� = 0)

Uc�U⇤Tc� = ⌦c P1/2
c �

T

c A��P1/2
� ⌦�⌦

⇤
�P⇤1/2� ��A�

T

c P⇤1/2c ⌦⇤c

= ⌦c P1/2
c �

T

c A(��P1/2
� P1/2

� �
T

� )A�T

c P⇤1/2c (14)

= ⌦c P1/2
c �

T

c A(�(�)/2)A�T

c P⇤1/2c ⌦⇤c (15)

since ⌦�⌦⇤� = 1�, and L� � B� = iP� was assumed on
the last line. In that case total capture is parameterized en-
tirely by �(�) appearing on the last line above, and implic-
itly in the level matrix A. Alternatively one could define
R-matrix using �0�0 matrix of partial width amplitudes to
be fitted in a standard R-matrix formalism.

3 Relationship to Fritz Froehner’s
prescription

The preservation of unitarity in the gRMA could be used
to justify FF’s prescription that enforces unitarity of the to-
tal cross section in the conventional RMA. When the con-
ventional RMA is viewed as a limit of gRMA in which o↵-
diagonal elements of capture matrix are set to 0, it is appar-
ent that this approximation of the capture matrix would not
violate unitarity. Consistently with this, FF’s method treats
the total cross section as if it has been computed from a
unitary scattering matrix, and capture cross section is then
computed as a di↵erence between the total cross section
(including capture), and the total particle cross section us-
ing particle-channel reduced R-matrix. Capture cross sec-
tion could be viewed as a deviation from unitarity of the
particle-channel scattering matrix, the latter by itself being
non-unitary; the total scattering matrix including particle
and resonant capture channels is nevertheless unitary.

4 Variance of gRMA matrix elements

Empirical fitting of Reich-Moore capture widths to
neutron capture and cross section data using conven-
tional Reich-Moore approximation often reveals variations



20 SAMMY 

Generalized RM Derivation 
•  Consider capture-width matrix Γγ inside the level matrix A 
 

= Γγ/2 = γgRMγgRM x x γγPγ
1/2 Pγ

1/2γγ

γγ       = Nλ x Nγ matrix of physical capture channel widths  
γgRM = Nλ x Nλ matrix of gRMA capture channel widths

Nλ

Nγ

Nλ

Nλ << Nγ 
 

•  Since total capture cross section depends on Γγ , it could be 
fit equally well by Nλ as it could by all Nγ capture channels 
–  True for total capture only (individual γ-channels require full R-matrix)    

Generalized Reich-Moore R-matrix Approximation
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Abstract. A conventional Reich-Moore approximation (RMA) of R-matrix is generalized into a manifestly
unitary form by introducing a set of resonant capture channels that are treated explicitly in a generalized reduced
R-matrix. A dramatic reduction of channel space witnessed in conventional RMA, from N

c

⇥ N

c

full R-matrix
to N

p

⇥ N

p

reduced R-matrix, where N

c

= N

p

+ N�, N

p

and N� denoting the number of particle and �-ray
channels, respectively, is due to N

p

⌧ N�. A corresponding reduction of channel space in generalized RMA is
from N

c

⇥ N

c

full R-matrix to N

c

0 ⇥ N

c

0 , where N

c

0 = N

p

+ N� and N� is the number of R-matrix levels. This
reduction, although not as dramatic as in the conventional RMA, could nonetheless be significant for medium
and heavy nuclides where N� ⌧ N�. The resonant capture channels introduced by generalized RMA are a
consequence of retaining level-level interference via capture channels neglected in conventional RMA. It is
shown that the expression for total capture cross section in generalized RMA is formally equal to that of the
full N

c

⇥ N

c

R-matrix. This suggests that generalized RMA could yield improved nuclear data evaluations in
the resolved resonance range. However, this would come at a cost of introducing N�(N� �1)/2 resonant capture
width parameters.
It is shown that manifest unitarity of generalized RMA may provide a formal basis for a method advocated
by Froehner and implemented in a nuclear data evaluation code SAMMY for restoring unitarity of conven-
tional RMA. A welcome byproduct of generalized RMA is that its capture widths are exactly convertible into
alternative R-matrix parameters via Brune tranform. Application of idealized statistical methods to generalized
RMA shows that variance among RMA capture widths could be used to estimate variance among o↵-diagonal
elements neglected in conventional RMA. Finally, it is shown that significant departure of capture widths dis-
tribution from an idealized one may indicate presence of underlying doorway states.

1 Introduction

2 Derivation

Cross sections � ⌘ {�
cc

0 } c = {↵, l, s, J} in terms of a
scattering matrix U could be written as

� =
⇡

k

2
↵

g
J↵ |e�2iw

c

1 � U|2�
JJ

0 (1)

where

U = ⌦(1 + P

1/2�T

A�P

1/2)⌦ (2)

is expressed in terms of level matrix A

A�1 = e � E1 + �(L � B)�T . (3)
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Partial width amplitude matrix � could be projected 1

into its particle channel sub-matrix �c and its �-ray chan-
nel sub-matrix ��

� ⌘ (�c,��) (4)

and analogously for L � B

L � B ⌘
 

Lc � Bc 0

0 L� � B�

!
(5)

so that a level matrix A could be expressed as

A�1 = e � E1 + ��(L� � B�)�T

� + �c(Lc � Bc)�T

c . (6)

where L� is a logarithmic derivative of �-ray outgoing
wave function conventionally separated into shift function
S� ⌘ <(L�) and pentrability P� ⌘ =(L�). The shift factor
of �-ray channels is approximated by 0 and their boundary
conditions are set to 0, namely,

L� � B� ⌘ S� + iP� � B� ⇡ iP� (7)
1Note: the word projected is intentionally alluding to Feshbach’s pro-

jection operator formalism (P+Q=1) of which Reich-Moore eliminated
channels could be viewed as a special case of projected out channels, i.e.
Q = �.

Consequently the level matrix A could be written as

A�1 ⇡ e � E1 + i��P1/2
� P1/2

� �
T

� + �c(Lc � Bc)�T

c (8)

where �-ray penetrability P� has been written as a prod-
uct of penetrability amplitudes P1/2

� = k

L+1/2
� where L

is �-ray multipolarity and k is its momentum wavenum-
ber so that E = ~k�c is its energy. (This form of �-ray
penetrabilities comes from expression for capture width
matrix elements in e.g. Section 3C-2 of Bohr and Mot-
tleson, Nuclear Structure, Vol. 1, rather than from the
logarithmic derivative of the outgoing wave function in
case of particle channels.) A �-ray channel is specified
by the energy and quantum numbers of the final reso-
nant state, E

f

, J
⇡

f

f

, and angular momentum quantum num-
bers L�ML� , and parity (or helicity) of the primary emit-
ted �-ray. Interferences between �-rays between di↵erent
capturing levels (e.g. µ and ⌫) that lead to o↵-diagonal
elements of �(�)

µ⌫ takes place among �-rays of the same
L�ML�⇡� into the same final level. For convenience one
could define generalized Reich-Moore capture width ma-
trix �(�)/2 ⌘ ��P1/2

� P1/2
� �

T

� so that

A�1 = e � E1 + i�(�)/2 + �c(Lc � Bc)�T

c . (9)

When �(�) is positive semidefinite, one could compute its
principal square root matrix of capture width amplitudes

�0�0 ⌘ [�(�)/2]1/2, (10)

that is to be used for fitting partial width amplitudes when
using R-matrix formalism. The partial width amplitude
matrix in gRMA would be a concatenation of particle and
capture width matrices, namely,

�0 = (�c,�
0
�0 ), (11)

in terms of which the gRMA reduced R-matrix is

R = �0T (e � E1)�1�0 (12)

where e is a diagonal matrix of R-matrix level energies,
eµ⌫ = Eµ�µ⌫.

(For level-matrix A formalism one could fit partial
capture widths in �(�) directly.) Matrix �(�) is positive
semidefinite because it is of the form M

T

M that implies
positive definiteness. Matrix �0�0 is a (N� ⇥ N�) matrix
while �� matrix is (N� ⇥ N�) . For the shift function ap-
proximation and boundary conditions mentioned above it
will be shown below that the total capture cross section
could be expressed via (N� ⇥ N�) �0�0 matrix in a way that
is equal to total capture computed via the original (N�⇥N�)
�� matrix. Since N� � N� for heavy nuclides this yields
a significantly smaller number of parameters needed to fit
total capture. However, this gain comes at a loss of infor-
mation needed to compute partial capture cross sections
contained in the original �� matrix. The unitarity of the
U-matrix is preserved when re-defining �-ray channels via
�0�0 , and in harmony with the conventional RMA penetra-
bility associated with these capture channels is 1 according
to definition in Eq. (10). Since the number of channels in

gRMA is N

c

0 = N

c

+ N�, there is slight advantage to us-
ing level-matrix A because it is slightly smaller than the
R-matrix in gRMA, although this advantage may not be
significant for N

c

⌧ N�. In contrast to gRMA, R-matrix
expressions are vastly advantageous in conventional RMA
because its reduced R-matrix is (N

c

⇥N

c

) where N

c

⌧ N�.
O↵-diagonal elements of �(�) matrix are set to zero in

conventional Reich-Moore approximation. The retained
diagonal elements are the capture width parameters of con-
ventional Reich-Moore approximation. The e↵ect of set-
ting o↵-diagonal elements to 0 in conventional RMA will
lead to a slight deviation between its fitted widths (mainly
the capture widths but other widths too to a smaller degree)
and those fitted using gRMA.

Note that a unitary matrix U could be divided into
blocks introduced above as

U ⌘
 

Ucc Uc�
U�c U��

!
(13)

so that a total capture cross section is proportional to (Note
that 1c� = 0)

Uc�U⇤Tc� = ⌦c P1/2
c �

T

c A��P1/2
� ⌦�⌦

⇤
�P⇤1/2� ��A�

T

c P⇤1/2c ⌦⇤c

= ⌦c P1/2
c �

T

c A(��P1/2
� P1/2

� �
T

� )A�T

c P⇤1/2c (14)

= ⌦c P1/2
c �

T

c A(�(�)/2)A�T

c P⇤1/2c ⌦⇤c (15)

since ⌦�⌦⇤� = 1�, and L� � B� = iP� was assumed on
the last line. In that case total capture is parameterized en-
tirely by �(�) appearing on the last line above, and implic-
itly in the level matrix A. Alternatively one could define
R-matrix using �0�0 matrix of partial width amplitudes to
be fitted in a standard R-matrix formalism.

3 Relationship to Fritz Froehner’s
prescription

The preservation of unitarity in the gRMA could be used
to justify FF’s prescription that enforces unitarity of the to-
tal cross section in the conventional RMA. When the con-
ventional RMA is viewed as a limit of gRMA in which o↵-
diagonal elements of capture matrix are set to 0, it is appar-
ent that this approximation of the capture matrix would not
violate unitarity. Consistently with this, FF’s method treats
the total cross section as if it has been computed from a
unitary scattering matrix, and capture cross section is then
computed as a di↵erence between the total cross section
(including capture), and the total particle cross section us-
ing particle-channel reduced R-matrix. Capture cross sec-
tion could be viewed as a deviation from unitarity of the
particle-channel scattering matrix, the latter by itself being
non-unitary; the total scattering matrix including particle
and resonant capture channels is nevertheless unitary.

4 Variance of gRMA matrix elements

Empirical fitting of Reich-Moore capture widths to
neutron capture and cross section data using conven-
tional Reich-Moore approximation often reveals variations
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Total capture of gRMA equals that of full R-matrix 
•  Working with alternative R-matrix parameters since S(E)-B=0  

is expressed in terms of level matrix A

A�1 = e � E1 + �(L � B)�T . (3)

Partial width amplitude matrix � could be projected
into its particle channel sub-matrix �c and its �-ray chan-
nel sub-matrix ��

� ⌘ (�c,��) (4)

and analogously for L � B

L � B ⌘
 

Lc � Bc 0

0 L� � B�

!
(5)

so that a level matrix A could be expressed as

A�1 = e � E1 + ��(L� � B�)�T

� + �c(Lc � Bc)�T

c . (6)

where L� is a logarithmic derivative of �-ray outgoing
wave function conventionally separated into shift function
S� ⌘ <(L�) and pentrability P� ⌘ =(L�). The shift factor
of �-ray channels is approximated by 0 and their boundary
conditions are set to 0, namely,

L� � B� ⌘ S� + iP� � B� ⇡ iP� (7)

Consequently the level matrix A could be written as

A�1 ⇡ e � E1 + i��P1/2
� P1/2

� �
T

� + �c(Lc � Bc)�T

c (8)

where �-ray penetrability P� has been written as a prod-
uct of penetrability amplitudes P1/2

� = k

L+1/2
� where L

is �-ray multipolarity and k is its momentum wavenum-
ber so that E = ~k�c is its energy. (This form of �-ray
penetrabilities comes from expression for capture width
matrix elements in e.g. Section 3C-2 of Bohr and Mot-
tleson, Nuclear Structure, Vol. 1, rather than from the
logarithmic derivative of the outgoing wave function in
case of particle channels.) A �-ray channel is specified
by the energy and quantum numbers of the final reso-
nant state, E

f

, J
⇡

f

f

, and angular momentum quantum num-
bers L�ML� , and parity (or helicity) of the primary emit-
ted �-ray. Interferences between �-rays between di↵erent
capturing levels (e.g. µ and ⌫) that lead to o↵-diagonal
elements of �(�)

µ⌫ takes place among �-rays of the same
L�ML�⇡� into the same final level. For convenience one
could define generalized Reich-Moore capture width ma-
trix �(�)/2 ⌘ ��P1/2

� P1/2
� �

T

� so that

A�1 = e � E1 + i�(�)/2 + �c(Lc � Bc)�T

c . (9)

When �(�) is positive semidefinite, one could compute its
principal square root matrix of capture width amplitudes

�0�0 ⌘ [�(�)/2]1/2, (10)

that is to be used for fitting partial width amplitudes when
using R-matrix formalism. The partial width amplitude
matrix in gRMA would be a concatenation of particle and
capture width matrices, namely,

�0 = (�c,�
0
�0 ), (11)

in terms of which the gRMA reduced R-matrix is

R = �0T (e � E1)�1�0 (12)

where e is a diagonal matrix of R-matrix level energies,
eµ⌫ = Eµ�µ⌫.

(For level-matrix A formalism one could fit partial
capture widths in �(�) directly.) Matrix �(�) is positive
semidefinite because it is of the form M

T

M that implies
positive definiteness. Matrix �0�0 is a (N� ⇥ N�) matrix
while �� matrix is (N� ⇥ N�) . For the shift function ap-
proximation and boundary conditions mentioned above it
will be shown below that the total capture cross section
could be expressed via (N� ⇥ N�) �0�0 matrix in a way that
is equal to total capture computed via the original (N�⇥N�)
�� matrix. Since N� � N� for heavy nuclides this yields
a significantly smaller number of parameters needed to fit
total capture. However, this gain comes at a loss of infor-
mation needed to compute partial capture cross sections
contained in the original �� matrix. The unitarity of the
U-matrix is preserved when re-defining �-ray channels via
�0�0 , and in harmony with the conventional RMA penetra-
bility associated with these capture channels is 1 according
to definition in Eq. (10). Since the number of channels in
gRMA is N

c

0 = N

c

+ N�, there is slight advantage to us-
ing level-matrix A because it is slightly smaller than the
R-matrix in gRMA, although this advantage may not be
significant for N

c

⌧ N�. In contrast to gRMA, R-matrix
expressions are vastly advantageous in conventional RMA
because its reduced R-matrix is (N

c

⇥N

c

) where N

c

⌧ N�.
O↵-diagonal elements of �(�) matrix are set to zero in

conventional Reich-Moore approximation. The retained
diagonal elements are the capture width parameters of con-
ventional Reich-Moore approximation. The e↵ect of set-
ting o↵-diagonal elements to 0 in conventional RMA will
lead to a slight deviation between its fitted widths (mainly
the capture widths but other widths too to a smaller degree)
and those fitted using gRMA.

Note that a unitary matrix U could be divided into
blocks introduced above as

U ⌘
 

Ucc Uc�
U�c U��

!
(13)

so that a total capture cross section is proportional to (Note
that 1c� = 0)

Uc�U⇤Tc� = ⌦c P1/2
c �

T

c A��P1/2
� ⌦�⌦
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c P⇤1/2c (14)

= ⌦c P1/2
c �

T

c A(�(�)/2)A�T

c P⇤1/2c ⌦⇤c (15)

since ⌦�⌦⇤� = 1�, and L� � B� = iP� was assumed on
the last line. In that case total capture is parameterized en-
tirely by �(�) appearing on the last line above, and implic-
itly in the level matrix A. Alternatively one could define
R-matrix using �0�0 matrix of partial width amplitudes to
be fitted in a standard R-matrix formalism.

is expressed in terms of level matrix A

A�1 = e � E1 + �(L � B)�T . (3)

Partial width amplitude matrix � could be projected
into its particle channel sub-matrix �c and its �-ray chan-
nel sub-matrix ��

� ⌘ (�c,��) (4)

and analogously for L � B

L � B ⌘
 

Lc � Bc 0

0 L� � B�

!
(5)

so that a level matrix A could be expressed as

A�1 = e � E1 + ��(L� � B�)�T

� + �c(Lc � Bc)�T

c . (6)

where L� is a logarithmic derivative of �-ray outgoing
wave function conventionally separated into shift function
S� ⌘ <(L�) and pentrability P� ⌘ =(L�). The shift factor
of �-ray channels is approximated by 0 and their boundary
conditions are set to 0, namely,

L� � B� ⌘ S� + iP� � B� ⇡ iP� (7)

Consequently the level matrix A could be written as

A�1 ⇡ e � E1 + i��P1/2
� P1/2

� �
T

� + �c(Lc � Bc)�T

c (8)

where �-ray penetrability P� has been written as a prod-
uct of penetrability amplitudes P1/2

� = k

L+1/2
� where L

is �-ray multipolarity and k is its momentum wavenum-
ber so that E = ~k�c is its energy. (This form of �-ray
penetrabilities comes from expression for capture width
matrix elements in e.g. Section 3C-2 of Bohr and Mot-
tleson, Nuclear Structure, Vol. 1, rather than from the
logarithmic derivative of the outgoing wave function in
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22 SAMMY 

Full R-matrix vs. conventional RM: total capture 
•  full R-matrix equivalent to gRMA; 2-level SAMMY example: 

Section II.B.2, page 2 (R8) Page 44 

Section II.B.2, page 2 (R8) Page 44 

Table II B2.1.  Parameter values used to illustrate Reich-Moore vs. full R-matrix calculations 
 

 O  Energy (MeV) OJ* (eV) nO* (eV) 
Sign 

u OJ* (eV)a

Reich Moore 1 1.0 1.0 10000.  
 2 1.1 1.1 11000.  

Pseudo-full R-matrix # 1 1 1.0 810 �  10000.   1.0 
 2 1.1 810 �  11000.   1.1 
Pseudo-full R-matrix # 2 1 1.0 810 �  10000.   1.0 
 2 1.1 810 �  11000. í1.1 
a Remember that the value given in the SAMMY PARameter file is not the partial width ī (which is always a positive 
number); rather, it is the sign of the reduced-width amplitude Ȗ multiplied by the partial width ī.  Hence, the negative 
sign in the final entry of this table is actually associated with the reduced-width amplitude for the capture channel.  See 
Section II.B.1 for further discussion. 

 
 
 

Figure II B2.1.  Reich-Moore approximation vs. full R-matrix for  
artificial example of test case tr110. 
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sign in the final entry of this table is actually associated with the reduced-width amplitude for the capture channel.  See 
Section II.B.1 for further discussion. 
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Table II B2.1.  Parameter values used to illustrate Reich-Moore vs. full R-matrix calculations 
 

 O  Energy (MeV) OJ* (eV) nO* (eV) 
Sign 

u OJ* (eV)a

Reich Moore 1 1.0 1.0 10000.  
 2 1.1 1.1 11000.  

Pseudo-full R-matrix # 1 1 1.0 810 �  10000.   1.0 
 2 1.1 810 �  11000.   1.1 
Pseudo-full R-matrix # 2 1 1.0 810 �  10000.   1.0 
 2 1.1 810 �  11000. í1.1 
a Remember that the value given in the SAMMY PARameter file is not the partial width ī (which is always a positive 
number); rather, it is the sign of the reduced-width amplitude Ȗ multiplied by the partial width ī.  Hence, the negative 
sign in the final entry of this table is actually associated with the reduced-width amplitude for the capture channel.  See 
Section II.B.1 for further discussion. 
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16O Full R-matrix vs. conventional RM toy case 

10 M. T. Pigni 

Treatment of the Capture Channels 
(Reich-Moore vs R-Matrix calculations) 
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•  R-matrix case (five states for 17O) generated by 
randomly sampling capture widths (in black) 

•  The R-matrix capture cross sections were used 
to obtain capture widths in Reich-Moore 
approximation and related capture cross 
sections (in red) 

•  The fit of the capture cross sections did not 
impact other reaction channels   

Good agreement between Reich-Moore and  
R-Matrix capture widths 
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History 
•  Developed by Dr. Nancy Larson since 1970’s through 2008  
•  Includes SAMMY + 25 auxiliary codes  

–  e.g. SAMRML 

•  Architecture 
–  Large Fortran (77) container array for memory management 

•  185 multi-step test cases + 10 tutorial examples 

•  Comprehensive Documentation: 
–  http://info.ornl.gov/sites/publications/files/Pub13056.pdf 

•  Employed for resolved resonance evaluations in ENDF 

•  Distributed via RSICC https://rsicc.ornl.gov/ 
–  SAMMY 8.1 is forthcoming 
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Capabilities 
•  Multi-level Multi-channel R-matrix code 
•  Bayesian fitting of R-matrix resonance parameters (RP) 

–  a.k.a. Generalized Least Squares  
–  yields covariance matrix of RP 

•  Data reduction: 
–  Experimental Facility Resolution functions: ORELA, RPI, GELINA 
–  Normalization, background  

•  Detector resolution functions 
–  Configurable for variety of detectors 

•  Doppler broadening 
–  Solbrig’s kernel, Leal-Hwang method 

•  Multiple scattering effects, and other target effects 

•  Charged projectiles (p, α) 

•  Unresolved Resonance Range (FITACS by F. Froehner) 
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Capabilities: R-matrix and Reich-Moore Approx. 

•  Reich-Moore approximation (RMA)  
–  For channels approximated statistically via Random Phase Hypothesis 
–  Applied mostly for capture channels 

•  penetrability P=1 for capture in RMA (and in exact R-matrix below) 

•  R-matrix w/o RMA  
–  Make capture channels as reaction channels in SAMMY input files 
–  Marco Pigni’s talk:  

•  Quantify accuracy of RMA relative to R-matrix on 16O using 5 γ-rays/level 
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Capabilities: Resolution broadening 
•  Experimental Resolution broadening 

–  Convolution of 4 components: 
•  The electron burst  

– a square function of time 

•  Neutron sources: 
–  tantalum target 
– water moderator 

•  Neutron detectors 
– model NE-110 recoil proton detector 
–  lithium glass detector 

•  Time-of-flight channel width  
– a square function of time 

•  Doppler broadening (DB) 
–  numerical convolution of cross sections by Solbrig kernel over E 
–  Double-differential c.s. DB-ed approximately by SAMMY now 

•       our group developed and published an exact method 
–  Leal-Hwang: efficient, used by SCALE 
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Capabilities: configurable energy mesh 
•  Auxiliary energy mesh for computations  

–  Includes data energy points and additional points 
•  especially at and near resonance peaks to trace their shapes completely 
•  Needed because resonance are narrower at T=0 K before Doppler 

broadening to room temperature for data 
–  Useful for comparing results from various codes 
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III.A.1.  Analyst’s Responsibility for Auxiliary Energy Grid 

 
In SAMMY, the user/analyst (not the author) is responsible for being sure that the numerical 

integrations are performed properly.  That is to say, the auxiliary energy grid (discussed in detail in 
Section III.A.2) must be sufficiently dense so that the numerical integration scheme produces the 
correct results. 
 

Why must the grid be dense?  Unbroadened cross sections would not be well defined on a 
sparse grid.  Hence, the integrations would not be accurate.  This is illustrated in Figures III A1.1 –
 4, which are greatly exaggerated for demonstration purposes.  In the first figure, red dots indicate 
the default grid points on which the unbroadened cross section might be calculated.  The dashed 
curve represents the actual unbroadened cross section, while the solid curve represents the 
approximate cross section found by interpolating between grid points.  With this sparse grid, 
agreement between the two curves in poor. 

 
 
 
 
 

Figure III A1.1.  Unbroadened cross 
section calculated using too few  

points in the auxiliary grid. 
 
 
 

  
 
 

Figure III A1.2 shows the Doppler-broadened cross section (solid curve) that would result 
from using the auxiliary grid of Figure III A1.1 to perform the numerical integration.  The calculated 
Doppler-broadened cross section is significantly larger than the actual Doppler-broadened cross 
section.  

 
 
 
 
 

Figure III A1.2.  Incorrect Doppler-
broadened cross section calculated 

with too few points in the  
auxiliary grid. 

 
 
 

Dotted curve = actual 
unbroadened cross section

Solid curve = linear 
interpolation between 
grid points

Dashed curve = actual Doppler-
broadened cross section

Solid curve = Doppler-broadened 
cross section calculated with too 
few points in auxiliary grid
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In contrast, Figure III A1.3 shows a denser auxiliary grid, one which adequately describes 
the unbroadened cross section.  The Doppler-broadened cross section calculated with this grid is 
shown in Figure III A1.4, in which the actual and the calculated Doppler-broadened cross sections 
are indistinguishable.  (Note that the “experimental” grid is the same in Figures III A1.2 and 
III A1.4.) 
 
 

 
 

Figure III A1.3.   Unbroadened 
cross section calculated using an 

adequate number of points  
in the auxiliary grid. 

Figure III A1.4.  Doppler-broadened 
cross section calculated with an  
adequate number of points in  

the auxiliary grid. 
 
 
 The reader may ask why SAMMY does not automatically check to be certain that the 
auxiliary grid is adequate, especially since this is done by other codes (e.g., processor codes such as 
AMPX [MD02] or NJOY [RM82]) which calculate Doppler-broadened cross sections.  Significant 
amounts of computation time are required for such checks.  With processor codes, the Doppler-
broadened cross section is generally calculated only once, and then used many times, so accuracy is 
far more important than speed of computation.  With analysis codes such as SAMMY, the Doppler-
broadened cross section is recalculated whenever new resonance parameters are used, so speed of 
computation can be an issue.  During initial stages of an analysis, the user may wish to sacrifice 
accuracy to gain speed.  During later stages of the analysis, the user will want to test whether there is 
sufficient accuracy. 
 

Options for increasing the density of points in the auxiliary grid are given in line 2 of the 
INPut file, Table VI A.1.  These should be used to make comparisons between Doppler- and 
resolution-broadened results from dense vs. sparse grids.  (For example, if the number of points is 
doubled by setting NXTRA = 1, and broadened cross sections are nearly the same as with 
NXTRA = 0, then the sparser grid is adequate.)  Early in the analysis, it is probably sufficient to use 
the sparsest grid that gives reasonable results.  Near the end of the project, a denser grid might be 
used to ensure greater accuracy. 
 

Dashed and solid curves 
are virtually identical.

Calculation agrees with actual Doppler-
broadened cross sections at the grid points.
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SAMINT: Nuclear Data Adjustment Based on 
Integral Benchmark Experiments (IBE) 

•  SAMINT is an auxiliary program designed to allow SAMMY 
to adjust nuclear data parameters based on integral data. 

•  Enables coupling of differential and integral data evaluation 
in a continuous-energy framework 

•  Informs the evaluation of resolved resonance parameters 
–  Based on performance in simulations of IBE’s 

•  Leverages RNSD (ORNL) expertise in sensitivity studies of 
nuclear IBE’s and applications 
–  SCALE modules TSUNAMI and TSURFER 

 



Integral Experiments to Aid 
Nuclear Data Evaluation 

•  SAMINT can be used to extract information 
from integral benchmarks to aid the nuclear 
data evaluation process. 

•  Near the end of the evaluation based on 
differential experimental data, integral data 
can be used to: 
•  Resolve remaining ambiguity between 

differential data sets 
•  Guide the evaluator to troublesome energy 

regions 
•  Inform the evaluator of the most important 

nuclear data parameters to integral benchmark 
calculations 

•  Improve the nuclear data covariance matrix 
evaluation 
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Cross Section Changes: Finer Scale than 
Differential Experimental Data 
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experimental data of Perey, presented with one standard deviation error bars.  
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Connections to AMPX and SCALE 
•  AMPX: data processing suite for SCALE data libraries 

–  Dorothea Wiarda, Andrew Holcomb, Michael Dunn (ORNL) 
–  Shipped with SCALE 6.2 via https://rsicc.ornl.gov 

•  SCALE: nuclear modeling suite for design, safety, licensing 
–  http://scale.ornl.gov Brad Rearden (ORNL) Manager 

•  SAMMY modernization follows AMPX and SCALE 
–  Mercurial version control system 
–  Cmake automated build and ctest automated testing 
–  Fogbugz Bug tracking system 

•  SAMMY Module SAMRML “shared” with AMPX:  
–  Stripped-down SAMMY for computing resonant cross sections  

•  no parameter fitting, no Doppler or resolution broadening 
–  also used in data processing codes: AMPX, NJOY, PREPRO 
–  Modernized into C++ by Andrew Holcomb 

•        Provides a framework for modernizing SAMMY 
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Modernization: SQA 
•  Version control of source code and test cases using Mercurial 
•  Bug tracking and workflow 

•  Cmake: auto configuration build (make –j) 

•  25 executables built automatically on several platforms 

•  Ctest: auto testing tool 
–  Test whether result are within a prescribed tolerance (1E-4) 

•  SAMMY files tested: LST, PAR, LPT… 
•  Makes it much easier to notice discrepancies. 

–  178 test cases from SAMMY 8.0.0 and 
–  4 new test cases for SAMINT 
–  1 new test case for RPI Lithium Glass detector resolution function 
–  (All test cases include subcases.) 
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Supported Platforms and Compilers 

•  Mac: gfortran 
•  Linux: gfortran, ifort 

•  Windows: ifort 
–  Revealed few remaining issues that were corrected 
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Modernization cont.’d 

•  Proposed SAMMY re-organization 
–  Delineate modules that compute cross sections from those that fit 

resonance parameters to the data 
–  i.e. keep SAMRML a standalone module called by a fitting program 
–  Fitting method could remain Bayesian or Generalized Least Squares    
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6Li-glass Neutron Detector Array MELINDA 
–  Improved parameterization  

•  Based on MCNP simulations by Amanda Youmans (RPI) 

! ! = !! + ln ! ∗ (!! + !! ∗ ln ! )             
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Liquid Scintillator Detector liquid CH1.212  

–  Based on MCNP simulations by Amanda Youmans (RPI) 
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Minor improvements in SAMMY 8.1 

•  Updated physical constants 
–  Consistent with SAMRML 
–  SAMMY and SAMRML yield identical results now 

•  Corrected a misplaced index causing incorrect matrix 
multiplication for non-diagonal data covariance matrix 
–  (uncovered and corrected by Vlad Sobes) 

•  Several other bug fixes 
–  Revealed by compiler or platform idiosyncrasies   
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Recent Developments 
•  Convert SAMMY resonance parameters to formal R-matrix 

–  SAMMY evaluations set Sc(E)-Bc=0 boundary condition (b.c.) 
•  Advantage: resonance energies coincide with resonance peaks 
•  Disadvantage: slight deviations from formal R-matrix 
•  SAMMY does support formal R-matrix Bc=-l b.c.  

–  Andrew Holcomb programmed conversion to/from formal R-matrix 
•  Converted 16O Sc(E)-Bc=0 into formal parameters for Marco Pigni’s talk   
•  and is extending it to Lc(E)-Bc=0  in complex plane 

•  S-matrix pole representation of R-matrix 
–  via e.g. Brune transform of R-matrix param.’s for Lc(E)-Bc=0 b.c. 
–  Useful for on-the-fly Doppler broadening in neutron transport app.’s 

•  Developed by Hwang (ANL) and Fritz Froehner (INR, Karlsruhe) 
•  Ongoing collaboration Vlad Sobes and N.E. at M.I.T. (Pablo Ducru) 

– Talk by Vlad Sobes this Friday 

–  Use Nicolas Michel’s complex Coulomb w.f. library (CPC, 176 (2007) 232) 


